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SI Figures

PDB: 3nnr Domain: TetR N family

PDB: 1oap Domain: OmpA family PDB: 2gj3 Domain: PAS family 

PDB: 1kgs Domain: Response regulator 

DCA map Native shadow map (5Å)

PDB: 1or7 Domain: Sigma70_r2 family PDB: 3df8 Domain: HxlR family

PDB: 3d7i Domain: CMD family 

PDB: 3ddv Domain: UTRA family PDB: 3nkh Domain: Phage Integrase PDB: 1jft Domain: LacI

PDB: 3nyy Domain: Peptidase_M23 PDB: 3bvp Domain: Resolvase

PDB: 3fms Domain: GntR PDB: 3fzw Domain: TrkA_N PDB: 3f52  Domain: HTH_3

Figure S1: Comparison of estimated contact maps with native maps. Lower triangular maps, below diagonal, represent
DCA contact maps and upper triangular maps are native shadow maps with cutoff value of 5Å. All the predictions
done in this study used as input a set of contacts estimated using Direct Coupling Analysis (DCA). One of the main
observations of the results in the main manuscript is that our methodology is robust to deviations of native contact
maps with respect to the estimated ones. DCA produces high quality estimates of contact maps both in terms of true
positive predictions but also in terms of the sparsity of the predicted contacts. Other statistical methods like mutual
information produce a relatively good number of true positive contacts but they tend to cluster in specific regions that
obscure the global structure of the native contact map [1].
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Figure S2: The quality of the predicted structures (testing proteins) measured in RMSD (Å) as a function of different
number of DCA contacts.
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TetR transcriptional regulator 

PDB ID: 3nnr
Peptidoglycan associated 

lipoprotein PAL PDB ID: 1oap

GntR transcriptional regulator 

 PDB ID: 2gj3

Transcription factor DrrD

PDB ID: 1kgs

Figure S3: Native structures of exemplary proteins in the main text, Fig. 4. The predictions using contacts from DCA
and native knowledge of torsional angles and contact distances in column 1 of Fig. 4 in the main text have a very high
resemblance to these native structures. These structures and those in Fig. 4 were produced using UCSF Chimera [4].
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Figure S4: Predicted RMSD for 15 proteins of different sizes for 100% of the protein residues. The symbols indicate
the nature of the information on local and non-local residue interactions. Non-local interactions are always derived
from DCA contacts. Local information is estimated based on the type of local secondary structure (SS). Open symbols
refer to proteins used to derive the statistical potentials, while filled symbols refer to proteins that were used to test
this model. The lines are guides to trends by symbols of the same color.
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Figure S5: GDT and RMSD curves for the transcriptional regulator of the TetR family, PDB: 3nnr.
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Figure S6: GDT and RMSD curves for the N-terminal catalytic domain of TP901-1 Integrase, PDB: 3bvp. A significant
difference in the RMSD values is observed when comparing the top 80% of residues and the complete protein. This is
evidence that a small fraction of outliers affect the RMSD for the complete protein.
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Figure S7: The distribution of minimal atomic distances between the top 10, 20 and 30 predicted residue pairs, using
Direct Coupling Analysis method, DCA. A total of 856 PBD structures were used to obtain these statistics.

A B C

Figure S 8: Contact map patterns used as masks of a 2D convolution for secondary structure identification. A-B)
Diagonal patterns used to identify parallel and anti-parallel β-strand/β-strand interactions. C) A chessboard-like
pattern is used to identify interactions involving α-helices.

7



Original contact map
20 40 60 80 100 120

20

40

60

80

100

120

Dilated input map for beta 
strand identification

 

 

20 40 60 80 100 120

20

40

60

80

100

120

Input map for alpha 
helix identification

20 40 60 80 100 120

20

40

60

80

100

120

Diagonal search for 
beta strand classification

 

 

20 40 60 80 100 120

20

40

60

80

100

120

Antdiagonal search for 
beta strand classification

 

 

20 40 60 80 100 120

20

40

60

80

100

120

Cross pattern search 
for helix classification

20 40 60 80 100 120

20

40

60

80

100

120

Figure S9: Secondary structure prediction procedure using contact map processing. This figure shows the example of
a transcriptional regulator of the GntR family (PDB: 3ddv). The upper left panel shows the estimated DCA contact
map. The upper center panel shows a dilated map which is used as pre-processed input for β strand identification.
The input for α helix identification does not require pre-processing (upper right panel). Lower panels show the results
after applying the 2D convolution masks for diagonal patterns SSβdiag

(lower left panel), anti-diagonal patterns SSβanti

(lower center panel) for β strand identification and inverted cross patterns for α helix classification SSα (lower right
panel). These outcomes are used to estimate secondary structure classifications for each residue in the domain based
as detailed in Algorithm S1.

8



SI Tables
Table S1: Annotations for the set of 15 protein domains for which the structural prediction methodology described in the main manuscript was applied. The
first 8 proteins were used to determine the proper set of global parameters for the structure based model (SBM).

Protein Fold Domain Name Pfam Organism
(PDB ID) Length Domain

3nnr α 53 TetR-family TerR N Marinobacter

transcriptional regulator aquaeolei

1or7 α 70 RseA Sigma70 Escherichia

region 2 coli

T
ra

in
in
g
se

t
3df8 α 91 Possible HxlR family HxlR Thermoplasma

transcriptional factor volcanium

1oap α/β 98 Peptidoglycan associated OmpA Escherichia

lipoprotein PAL coli

(Periplasmic domain)
3d7i α 98 Oxygen detoxification CMD Methanococcus

CMD protein jannaschii

2gj3 α/β 118 Transcriptional regulation PAS Azotobacter

sensor protein NifL vinelandii

3ddv β 139 Transcriptional regulator UTRA Enterococcus

GntR family faecalis

3nkh α 187 Integrase Phage Staphylococcus

MRSA strain integrase aureus

T
e
st

se
t

1jft α 54 Purine repressor LacI Escherichia

PurR (N-terminal) coli

3f52 α 57 Gene regulator HTH 3 Corynebacterium

ClgR glutamicum

1kgs α/β 112 Transcription factor Receiver domain Thermotoga

DrrD (Response regulator) maritima

3nyy β 112 Putative glycyl-glycine Peptidase M23 Ruminococcus

endopeptidase lytM gnavus

3fwz α/β 116 Inner membrane TrkA N Escherichia

protein ybaL coli

3fms α 120 GntR transcriptional GntR Thermotoga

regulator maritima

3bvp α/β 133 N-terminal Catalytic Domain Resolvase Lactococcus

of TP901-1 Integrase phage TP901-1
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Table S2: GDT TS scores for the proteins (100% of residues) involved in this study.

Non-local Information Native Estimated Native Native Estimated Estimated

Local Information Native Native Estimated Estimated Estimated Estimated
(native SS) (estimated SS) (native SS) (estimated SS)

PDB ID GDT TS

T
ra

in
in
g
se
t

3nnr 99.5 92.4 93.4 89.6 71.7 58.5
1or7 100.0 85.0 92.9 78.9 64.0 44.0
3df8 94.8 77.2 56.0 34.6 45.3 26.4
1oap 100.0 81.4 76.0 65.3 55.6 37.2
3d7i 97.7 56.6 69.1 51.5 37.5 34.9
2gj3 99.6 62.0 75.6 72.0 40.8 36.3
3ddv 99.1 57.9 68.7 51.0 30.0 24.1
3nkh 84.8 51.7 54.0 61.4 34.8 26.0

T
e
st

se
t

1jft 100.0 80.6 76.0 76.4 58.8 47.7
3f52 99.6 78.1 90.6 83.9 53.1 51.3
1kgs 100.0 64.4 94.2 73.8 61.3 32.7
3nyy 98.4 53.6 67.2 59.6 33.5 27.0
3fwz 99.4 66.4 90.7 66.4 37.5 33.8
3fms 100.0 62.0 94.7 92.2 58.0 52.7
3bvp 100.0 54.3 79.7 52.7 37.8 23.6

1
0



Table S3: Comparison of performance of predicted protein structures with respect to experimentally determined structures. The parameters are: contact
maps based on DCA, random maps and estimated non-local information.

Contact maps DCA Random

Non-local Information Estimated Estimated

Local Information Native Native

Protein ID (fold) Length/No. of contacts RMSD in Å(RMSD 100% of residues)

1jft(α) 54/114 1.2 (1.4) 2.1 (2.6)
3f52(α) 57/111 1.2 (1.5) 2.0 (2.5)

1kgs(α/β) 112/219 1.8 (2.5) 4.9 (6.5)
3nyy(β) 112/237 2.5 (3.0) 6.8 (8.2)

3fwz(α/β) 116/271 1.7 (2.3) 4.0 (5.1)
3fms(α) 120/301 2.0 (2.6) 5.3 (6.7)

3bvp(α/β) 133/301 2.5 (3.6) 4.6 (6.2)

1
1



Table S4: RMSD of sample proteins (100% of residues) from Table 1 before/after refinement.

Non-local Information Native Estimated Estimated Estimated

Local Information Native Native Estimated Estimated
(native SS) (estimated SS)

Protein ID Length RMSD in Å

3nnr 53 0.4 0.9/1.0 2.1/2.4 2.9/2.3
1oap 98 0.2 1.5/1.6 3.0/3.5 5.1/4.9
2gj3 118 0.4 2.7/2.9 4.3/4.2 5.0/5.4
1kgs 112 0.3 2.5/2.5 4.3/4.1 5.4/5.9

1
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Table S5: The best prediction performance based on optimized parameters for the statistical distance potential (non-local information) and the same number
of DCA contacts as in Table 1 (100% of residues) in the main manuscript. Results shown in Å.

Non-local Information Native Estimated Estimated Estimated

Local Information Native Native Estimated Estimated
(native SS) (estimated SS)

Protein ID (fold) RMSD in Å

3nnr(α) 0.3 0.1 2.1 2.9
1or7(α) 0.3 0.9 2.1 4.1
3df8(α) 0.6 1.1 3.9 6.4

1oap(α/β) 0.2 1.5 3.0 5.0
3d7i(α) 0.9 2.7 5.2 5.6

2gj3(α/β) 0.4 2.7 4.3 5.4
3ddv(β) 0.4 2.7 6.1 7.2
3nkh(α) 0.9 3.3 6.2 7.2

1
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Table S6: Best predictions (100% of residues), based on different number of DCA contacts. Results shown in Å. For the estimated local information, SS

represents the knowledge of native secondary structure while ŜS represents estimated secondary structure information.

Non-local Information Native Est. Native Native Est. Est.

Local Information Native Native Est.-SS Est.-ŜS Est.-SS Est.-ŜS

PDB ID (fold) DCA RMSD DCA RMSD DCA RMSD DCA RMSD DCA RMSD DCA RMSD

contacts in Å contacts in Å contacts in Å contacts in Å contacts in Å contacts in Å

3nnr(α) 178 0.3 178 0.5 137 1.0 137 1.1 83 2.0 83 2.8
1or7(α) 292 0.3 483 0.9 165 1.0 165 2.3 203 2.1 203 4.1
3df8(α) 93 0.6 93 1.6 62 3.0 52 5.2 62 3.9 62 6.4

1oap(α/β) 638 0.3 423 0.9 1087 0.6 1087 1.0 104 3.0 282 5.0
3d7i(α) 510 0.6 183 1.7 76 2.3 76 3.4 50 5.2 101 5.7

2gj3(α/β) 367 0.4 367 2.7 367 2.0 367 2.8 367 4.3 367 5.5
3ddv(β) 264 0.5 264 2.2 264 2.3 298 3.9 298 5.6 298 6.8
3nkh(α) 1254 0.5 445 3.3 726 3.0 726 3.3 455 6.2 445 7.2

1
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SI Methods

1 Direct Coupling Analysis

Direct Coupling Analysis (DCA) The mathematical formulation and an extensive evaluation of the capabilities
of the mean field implementation of DCA (mfDCA) is described in detail by Morcos et al. [1].

1.1 Multiple Sequence Alignments (MSA)

The multiple sequence alignments used in our study were obtained directly from Pfam for the protein families listed
in Table S1. The same alignment parameters as the ones used in the Pfam database were employed. After obtaining
the full alignment from Pfam, a post-processing step was needed to remove all the inserts (represented by lowercase
amino acids) and the gaps introduced to align those inserts (periods). That way we only retain residues mapped to
the Hidden Markov Model of the protein family. No other parameter optimization was done to the MSA. The main
purpose in doing this was to keep the number of adjustable parameters at a minimum.

1.2 Distance distribution

One important feature of DCA is the quality of its contact predictions. Since DCA tries to disentangle direct from
indirect correlations among residue pairs, the resulting highly ranked predictions tend to be residues that are in
physical proximity in the three dimensional structure of a given protein sequence [1]. The distribution of minimal
atomic distances between the top 10, 20 and 30 predicted residue pairs, using DCA, is illustrated in Figure S7. These
statistics were computed for 856 PDB structures for which residue-residue prediction was performed. It is clear that
the peak of the distribution is found between 3.5-5Å with a second peak around 7-8Å.

2 Structure-Based Model is parametrized by the native state

We used a structure based model, where each amino acid is represented by a single bead of unit mass placed at the
location of the Cα atom. Bond lengths are maintained by harmonic potentials. Non-bonded atom pairs, that are in
contact in the native state between residues i and j (where |j− i| > 4), are given an attractive Gaussian well potential
[8]. All other non-local interactions are repulsive. The amino acids ai and aj that are in contact in the native state
are identified based on Shadow map [7]. The basic form of the potential is,

V (rij) = Vcontact(rij) + Vtor(αi, τi). (1)

The contact potential is composed of two terms:

Vcontact(rij) =
∑

DCAcontacts
(i,j>i+4)

ǫC
[
(1 + (σC/rij)

12)(1− exp(−(rij − r
N
ij )2/(2(σN

ij )2))) − 1
]

+ (2)

∑

non contacts
(i,j>i+4)

ǫR(
σC

rij
)12 +

∑

bonds

kb(rij − r
Nb
ij )2,

where Vcontact(rij) is a Gaussian well. rNij corresponds to the native distance between the pair i, j and width
σij . When contact maps and distances were determined based on crystallographic data, σij is defined such that
Vij(r

N
ij = 1.2µij) = − 1

2 , which gives the Gaussian well a variable width that mimics the width of a 10-12 Lennard-

Jones interaction with the same rCij . This choice defines (σN
ij )2 =

(
rNij

)2
/(50 ln 2). The second term is independent of

rNij and maintains the excluded volume of the polypeptide. The parameter σC = 4Å corresponds to the repulsive size
of the beads, between both native and nonnative pairs. The last term represent interaction between beads adjacent
in the sequence separated by native distance, rbNij .
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The local propensity of the chain is described by a traditional dihedral potential,

Vtor(αi, τi) =
∑

angle{i}

ka(τi − τ
N
i )2 +

∑

dihedral{i}

kd([1− cos(αi − α
N
i )] + (3)

1

2
[1− cos(3(αi − α

N
i ))])

where τNi is the native angle between the bonds connecting three consecutive atoms, and αN
i is the native angle

between the planes defined by four consecutive atoms. The interactions strengths are kb = 2 × 104ǫ/nm2, ka =
40ǫ/rad2 and kd= ǫ, with the reduced unit of energy ǫ = kBT . Symbol N is used to refer to a single native structure
as the reference state. This model has been characterized in detail elsewhere [9] and is freely available on the web [7].

3 Structure based model combined with statistical potentials

The prediction of protein structures was performed based on the energy function given by equation 1, where all
parameters with superscript N and the shape of the Gaussian basin were replaced with values obtained from statistical
potentials. The symbol restij represents the estimated distance between the pair i, j with correspoding σest

ij . The native

distance between consecutive atoms that are in contact along sequence rbNij is replaced by the constant value rbij =3.8Å.

3.1 Contact maps

The native contact maps were replaced with maps obtained based on Direct Coupling Analysis (DCA). The DCA
maps were sometimes modified. Some pairs were removed from the map when they had very small probability of
existence based on methods described in the following section.

In order to decide the number of DCA contacts to use as input to DCA-fold, we systematically tested different
numbers of DCA contacts for each of the training proteins until we found the optimum prediction. For the testing
proteins, we used similar number of DCA contacts as the ones observed in the training set, based on the protein
which have to most similar number of amino acids. In general, we observe that the prediction results are robust to
the specific number of DCA contacts selected (See Figure S2).

In order to decide the number of DCA contacts to use as input to DCA-fold, we test the quality of the prediction
(RMSD) based on at least 4 different set of DCA contacts.

3.2 Statistical potential for non-bonded interactions

We developed a series of distance potentials based on [15, 14, 16, 17] to mimic the interaction between pairs from DCA
map. These potentials have a minimum at the estimated pairwise distances rcai,aj

, parameters which weight different
type of interactions, chemical properties of the amino acids types ai and aj and their sequence separation Sij . We
optimized the coefficients in our potential in a way to obtain a minimally frustrated landscape based on training set
composed of 8 proteins.

Below we describe the main steps to construct a knowledge based distance potential, to model the type of interac-
tions between DCA pairs. The following steps are optimized independent of the testing set data.

1. As an input to construct the distribution of pairwise distances rtai,aj
, sets of proteins were used e.g.:

a test set of 32 proteins (S1) from [16], a test set of 65 proteins (S2) from [19], a test set of 60 proteins (S3) from
[18].

2. To detect pairs of interacting amino acids ai and aj in the native state of proteins and their distances rtai,aj
in

each test set S1,2,3, we used two types of techniques: shadow map [7] and cutoff map [20].

3. When all pairs ai, aj with associated distance rtai,aj
were detected, they have been grouped based on the type of

chemical properties Kxy
ai,aj

. Where x and y represent four possible types of amino acids properties, hydrophilic
(h), polar (p), acid/hydrophobic (a) and basic (b).

4. For each amino acid pair ai, aj , the distribution of sequence separation, Sij=|j − i| was calculated.

5. The probabilities for each amino acid to be in a particular pairwise conformation were computed based on the
three most probable sets as follows:
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P hh(a)=(Na
hh/Nhh)/(Na/N),

P bb(a)=(Na
bb/Nbb)/(N

a/N),
P hb(a)=(Na

hb/Nhb)/(N
a/N).

Where Na
xy is the total number of pairs containing amino acid a involved in a pairing with chemical properties

x, y. On the other hand, Na is the frequency of cases where amino acid a appears in the data set. Nxy is the
total number of pairs with chemical properties xy and N is the total number of amino acids found in the dataset.
These values were used to obtain the probability P xy(ai, aj) = − lnP xy(ai) + lnP xy(aj).

In the following, we use information from our previous steps to determine restai,aj
(based on distribution of rtai,aj

)
and the shape of the Gaussian basin for each pair of amino acids predicted with DCA for a given protein in the training
set.

1. The distribution of pairwise distances rtai,aj
with associated chemical property Kx,y

a,a and sequence distance Sij

can be broad or have more than two peaks. To find what is the most probable value of the pairwise distance
restai,aj

for a given pair from DCA map, we use the ranking of DCA contacts as defined in Section 1. Contacts
from the DCA map are divided into three sets. The following possible combinations of sets were tested: the first
10 contacts and the rest of the contacts, the first 20 contacts and the rest of the contacts, the first 30 contacts
and the rest of the contacts. Depending on which data set the pair is associated, restai,aj

is assigned a shorter
(either top 10, 20 or 30) or longer distance (rest of the contacts) based on the distribution of pairwise distances
rtai,aj

.

2. All pairs are then grouped according to their sequence proximity classes (short, intermediate and long range),
similarly to an associative memory model [16]. We distinguish the following subgroups: short range in sequence
contacts |j−i| <= 4, 5; intermediate range in sequence contacts 5 < |j−i| <= 8, 5 < |j−i| <= 10, 5 < |j−i| <=
13, and long range in sequence contacts |j − i| > 8, 10, 13.

3. According to which group from the previous step a given pair was assigned, the optimal shape of the Gaussian
potential (given by Eq. 2) was tested. The parameter ǫ, which describes the strength of interaction, was used
always as ǫ = 1. We optimized width σest

ai,aj
of the basin. Both of these parameters, independently, vary the

shape of the attractive potential without changing its repulsive part. The following potential widths were tested:

(a) σscaled
ai,aj

, the scaling behavior of the shape of the potential was modeled by making the width proportional

to the contact distance, σscaled
ij =krestai,aj

, where the constant k was chosen to be (k = 0.091).

(b) σshort,medium,long
ai,aj

was represented by three different constant widths:

• For short range contacts distance (around 5.5Å), typically assigned to hydrogen bonds and contacts
that were predicted with high confidence by DCA method, we used σshort

ai,aj
= 0.4, 0.5, 0.6 Å.

• For intermediate range contact distances (around 7-8Å), we used σmedium
ai,aj

= 0.7 Å.

• For long range contacts distances (above 10Å), typically hydrophobic interactions and contacts which
were not predicted with high confidence, we used σlong

ai,aj
= 1.0, 1.2, 1.5 Å. Such broad width of the well

of the Gaussian potential was still maintaining ability to fold, however folding was less cooperative.

4 Torsional potential

The native geometry of the amino acid chain, the native angle τNi and the native dihedrals αN
i , were replaced by τesti

and αest
i based on the following procedures.

4.1 Conversion from all atom to Cα representation for dihedral angles

The degrees of freedom of peptide bonds are usually described with φ and ψ torsional angles (dihedral angles) based
on N-Cα and Cα-C bonds, respectively. To describe the conformation of the backbone in Cα model we used a relation
developed by Levitt [12]. The degrees of freedom of the backbone are given by two angles α and τ , which are obtained
from the following relation:

αi = 180◦ + φi+1 + ψi + 20◦(sinφi + sinψi+1) (4)
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based on [12]. The torsional angle αi is defined by the position of four adjacent Cα atoms, Ci−1, Ci, Ci+1, Ci+2,
and two pairs of φi−1,i and ψi−1,i values. The bond angle τi is defined between Ci−1, Ci and Ci+1 and changes with
respect to αi as:

τi = 106◦ + 13◦ cos(αi − 45◦). (5)

4.2 Dihedral angle estimation

To estimate dihedral angles based on protein sequences we used neighbor dependent probability distributions calculated
by Ting el al. [5]. This pairwise Ramachandran distributions can be combined to get estimates of φ and ψ angles
using the following formulation:

(φ̂, ψ̂) = arg max p̂(φ, ψ|C,L,R) (6)

with

p̂(φ, ψ|C,L,R) =
f̂(φ, ψ|C,R)f̂ (φ, ψ|C,L)

f̂(φ, ψ|C)
(7)

where C,L,R are the center, left and right position in the sequence and ˆf(·) is the statistical pairwise distribution.
Results of Eq. 6 are in general biased towards alpha helix prediction. To correct for that bias, we used knowledge
of secondary structure (either native or estimated) to guide dihedral estimation. If it is known a priori that a given
sequence triplet belongs to a β-strand or α-helix then we restrict the estimates to a preferred quadrant of typical
Ramachandran distributions for β-strands or α-helices. This way the maximization procedure in Eq. 6 would get the
angles with highest probability constrained to such predefined quadrants. For the case of the alpha helix we constrain
the estimates to a region where φ̂ < −60 and −90 < ψ̂ < −40. We defined the corresponding region for beta strands
as being φ̂ < −100 and ψ̂ > 80. For the rest of possible configurations, like loops, turns, left handed alpha helices, etc.
we do not constrain the estimation and use the plain formulation shown in Eq. 7. When we use the native knowledge
of the SS classification to bias equation 6 and to estimate (αi, τi), we refer to this with the identifier for the Torsional
Potential: Estimated (native SS) in the main text and tables.

4.3 Secondary structure estimation

As described in the previous section, we use information about the secondary structure of the protein or domain to
guide the estimation of dihedral angles. We can use native knowledge of the secondary structure, i.e. a mapping
between a residue and a coarse grained secondary structure category like alpha helix, beta strand and everything else
directly from the three dimensional structure. The second option is to infer secondary structure categories using a
statistical estimation method. Although there are a number of methods for secondary structure prediction which can
be used as input to our model, we decided to extract this information from the DCA contact maps. We use this simple
method as a lower limit of what can be achieved with secondary structure prediction, while our upper limit is the
native knowledge extracted from the structure.

To determine if a given residue belongs to a secondary structure classification, we search in the contact map for
features that could represent secondary structure elements. For example, parallel or anti-parallel aligned β-strands
usually form diagonal patterns ( Figure S8A-B) and contacts involving α-helices are characterized by a series of
chessboard like pattern or inverted cross ( Figure S8C). Since the estimated contact maps are usually sparse, we
pre-process the map with an image dilation technique that will help merge isolated regions of the contact map that
were empty. This is important for contact maps that have a small number of predicted contacts. After this, pattern
matching is accomplished using a two dimensional convolution between the estimated contact map and a mask having
a diagonal pattern (β-strands) and an inverted cross pattern (α-helices). The output of the convolution will show
higher signals in the contact map where the pattern matches better. The output of the beta strand convolution
is then compared with the one of the alpha helix convolution. Using a predefined threshold optimized with native
contact maps, the algorithm provides a secondary structure assignation (beta, alpha or other) for each residue in the
protein. The secondary structure prediction algorithm is summarized in Algorithm S1. This method is used to guide
the estimates in Eq. 6 and to determine (αest

i , τesti ). These values are used as parameters for the torsional potential
Vtor(αi, τi) . This is referred in the main text and tables as Estimated (estimated SS).
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Algorithm S1. Secondary Structure Prediction Algorithm

Input: DCA contact maps: CM

SSα ← conv2D(CM,maskα) ⊲ 2D convolution: α-mask
SSβ

diag ← conv2D(CM,maskdiag) ⊲ 2D convolution: diagonal β-mask
SSβ

anti ← conv2D(CM,maskanti) ⊲ 2D convolution: anti-diagonal β-mask
SSij ← SSβdiag + SSβanti − 2SSα ⊲ Normalize and compare β and α elements

SS ←
∑

j SSij ⊲ Collapse the matrix SSij into a one dimensional array SS of length L
⊲ where L is the protein sequence length

for All i residues in SS do
if SSi > T then ⊲ T is optimized with native contact maps

ŜSi ← β−strand
else if SSi < −T then

ŜSi ← α−helix
else

ŜSi ← other ⊲ this could be loops, turns and left-handed helices
end if

end for
Output: Secondary structure prediction ŜS

The secondary structure assignations in the estimate ŜS are used to guide the torsional angle estimates (αest
i , τesti )

discussed in the previous section. Figure S9 shows an example of the processing done to predicted DCA contact maps
to identify secondary structures.

4.3.1 Secondary structure prediction metric

The performance metric used for our DCA contact map based predictor of secondary structure (SS) is a Hamming
distance between the secondary structure classifications (beta strands = 2, alpha helices=1, and other possible con-
figurations=0) and the predictions. Suppose that we have an native SS vector in F

L for a given protein of length L

and an alphabet F ∈ {0, 1, 2} and an estimated vector ŜS in F
L. Then the performance criterion will try to minimize

the Hamming distance between the vectors defined as:

H(SS, ŜS) =

L∑

i=1

SSi ∧ ŜSi (8)

where the ∧ operator only equals 1 when the the elements are the same and otherwise is 0. In case of a tie in the
minimum distance, then estimates of SSi = 0 will have a better priority since these only represent unguided dihedral
estimates from the Drichlet distributions. Other optimizations can be done if it is known a priori if a protein is only
alpha helical or contains purely beta strands. However, such considerations are not used in this work.

5 Best parameters for statistical potentials to predict protein structures

The energy function constructed according to the above criteria was next optimized based on a different number of
DCA contacts for eight proteins from the training set (Table S1). We found that the best results we obtained were
those for the model constructed based on :

• Set of 65 proteins from [19] (set S2) was chosen to build the pairwise distance distribution rtai,aj
.

• Pairs of contacts with corresponding distance rtai,aj
were identified with shadow map.

• Pairs with rtai,aj
were clustered according to their chemical properties.
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• Pairs from DCA maps were accepted when P xy(ai, aj) = − lnPhh(ai) + lnPhh(aj) was bigger than 0.2.

• The optimal value of pairwise distance restai,aj
was chosen from rtai,aj

with the following rule: if a pair was found

in the top 20 DCA ranking and the distance distribution rtai,aj
had more than one maximum, we chose the

maximum corresponding to the shorter distance in the distribution of rtai,aj
, according to the distribution of

distances shown in Figure S7.

• Next, optimal values of restai,aj
were clustered into subgroups |j− i| =< 5, 5 < |j− i| =< 8, 8 < |j− i| <= 12 and

|j− i| > 13 to which the corresponding shape of the Gaussian well was assigned: |j− i| =< 5 with σfixed,est=0.5,
5 < |j − i| =< 8 with σfixed,est=0.7, 8 < |j − i| <= 12 with σfixed,est=1.0, |j − i| > 13 with σfixed,est=1.2.

• The final results for all fixed parameters considering the previous steps and the method to calculate torsional
angles (α,τ) are shown in Table 1 in the main manuscript.

5.1 Molecular dynamics simulations of folding

The simulations were performed with the GROMACS 4.0.5 software package [11]. The software was additionally
modified to support different contact and torsional potentials. Reduced units were used for all calculations with time
steps of size 0.0005. Trajectory coordinates were saved every 100 time steps.

We performed stochastic dynamics with annealing protocol and the Nose-Hoover thermostat [10] . The annealing
protocol was specified as a single sequence of corresponding time steps and reference temperatures. Tf was determined
for three proteins and averaged to determine a T∗

f for the rest of the proteins. We used a high temperature of
T=160 which corresponds to T=1.4T∗

f (strongly favoring the unfolded configuration) and a few very low temperatures
T= 0.16T∗

f , 0.2T∗
f , 0.33T∗

f (strongly favouring the folded configuration).

Annealing starts at T= 1.4T∗
f at 0 ps and stays constant until 20×106 time steps. Subsequently, temperature

will drop linearly to reach T=0.33 T∗
f at 40×106 time steps, and then stays constant until 50×106 time steps. The

time steps were reduced from 40×106 to 20×106 time steps and from 50×106 to 40×106 time steps for the smallest
proteins. Initial conformations were generated by simulating homopolypeptides without any attractive interactions.
Additionally the long equilibration (1×106 time steps) at high temperature was used to ensure an uncorrelated random
distribution of starting configurations. When knowledge-based potentials, described in previous sections, were used,
they were introduced at the start of the annealing procedure. For each protein, at least 300 independent runs were
performed. As minimization is inherently statistical, this ensures convergence on the resolution of protein structures.

6 All-atom reconstruction and empirical all-atom force-field for refine-

ment

To reconstruct all heavy atoms in predicted protein conformations we used PULCHRA software [13]. The following
additional PULCHRA options were used, optimization of backbone hydrogen patterns and detection of cis-proline
conformations. After reconstruction, the predicted structures were additionally relaxed with an empirical all-atom
force-field for refinement. We used Amber99 (as a force field in GROMACS) with explicit Tip3p solvent and counter
ions [21]. We used stochastic dynamics with a time step of 2 fs, and Particle Mesh Ewald electrostatics [22].

The RMSD for 4 sample proteins after refinement is shown in Table S4. We found that refinement did not change
the fold of the predicted proteins, the RMSD along Cα atoms vary no more than 1 Å with respect to the native
conformation. This shows that the initial estimates did not have steric clashes or unphysical conformations.

7 Global Performance Measures

7.1 Q-metric

Another metric for protein structure comparison is the Q-metric [2]. This metric is independent of alignment and
compares internal distances of the reference protein structure with the internal distances of a target. Internal distances
are calculated between Cα atoms of each residue i and all N − 1 other Cα atoms in the protein. For a residue pair
i, j, it is defined as:

Qij = exp[−(rij − r
N
ij )2] (9)
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where matrix rNij contains all the internal distances of a given structure for i > j. To have a global metric for structure
prediction, an average of all Qij is computed, yielding

Qtotal = 〈Qij〉. (10)

7.1.1 Global Distance Test (GDT) metric

Another measure useful for structure prediction comparison is the Global Distance Test (GDT). This metric computes
the percentage of residue distances, from the predicted structure with respect to the target structure, under a certain
threshold [2, 3]. For instance GDT Pn represents this percentage under a distance threshold less or equal than nÅ.
The GDT total score or GDT TS is defined as:

GDT TS = (GDT P1 + GDT P2 + GDT P4 + GDT P8)/4. (11)

Performance curves can be calculated for any user defined cutoff n. Figure S5 and Figure S6 show GDT curves
(blue) for a two proteins (PDB: 3nnr, 3bvp). RMSD as a function of a fraction of the total number of protein residues
(red) is also shown. A significant difference in the RMSD values is observed when comparing the top 80% of residues
and the complete proteins. Illustrating how a small fraction of outliers has large effects on the RMSD for the complete
protein. Table S2 shows the GDT TS scores for the rest of the proteins in the dataset for difference amounts of native
information used in the prediction.

8 Random maps

To evaluate the contribution of the DCA contacts, we generated 7 random contacts maps with the same number of
contacts as the DCA estimates for each protein from the testing set. Those maps included only contacts with |j−i| > 4
as DCA maps. We performed prediction for each protein using these maps, estimated non-local information and native
local information. The median RMSD value obtained from the best predicted structures based on 7 random maps and
its 80% is shown in Table S3.

9 Protein sets and summary of results

The model obtained based on the training set data (8 proteins) represents the energy function which successfully
predicted protein structures, see Table 1 in the main manuscript. We used this best general model with fixed parameters
to predict the structures of 7 proteins domains ranging in length from 50 to 135 residues (lower part of Table 2).

We found that a large variation of the number of DCA contacts has an influence on the quality of the prediction
(Table S6), as should be expected. However two trends are observed: firstly, increasing the number of DCA contacts,
even with more false positives, improved resolution of prediction when local information is known. Secondly, when
local information is estimated, a better prediction is observed with a smaller number of DCA contacts.

A comparison between Table 1 in the main manuscript, showing results with fixed model parameters, and Table
S5, with individual parameter optimizations, shows small performance fluctuations (gains up to 2Å). This indicates
the robustness of our designed model.
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